John W. Chinneck. Associated member, GERAD. Professor, Department of Systems and Computer Engineering, Carleton University, Canada. John Chinneck. Professor of Linear programming with interval coefficients. JW Chinneck, K J Li, J Chinneck, M Woodside, M Litoiu, G Iszlai. Proceedings of. Operations Research and Cyber-Infrastructure (Operations Research/Computer Science Interfaces Series). John W. Chinneck. from: $

Author: Kajijas Zoloshura
Country: India
Language: English (Spanish)
Genre: Personal Growth
Published (Last): 23 April 2006
Pages: 309
PDF File Size: 15.84 Mb
ePub File Size: 7.89 Mb
ISBN: 765-2-69301-911-9
Downloads: 16219
Price: Free* [*Free Regsitration Required]
Uploader: Vudosho

We use cookies to give you the best possible experience. By using our website you agree to our use of cookies. Dispatched from the UK in 4 business days When will my order arrive? Home Contact Us Help Free delivery worldwide. Feasibility and Infeasibility in Optimization: Description Written by a world leader in the field and aimed at researchers in applied and engineering sciences, this brilliant text has as its main goal imparting an understanding of the methods so that practitioners can make immediate use of existing algorithms and software, and so that researchers can extend the state of the art and find new applications.

It includes algorithms on seeking feasibility and analyzing infeasibility, as well as describing new and surprising applications. The Best Books of Check out the top books of the year on our page Best Books of Product details Format Hardback pages Dimensions x x Looking for beautiful books?

Visit our Beautiful Books page joun find lovely books for kids, photography lovers and more. Other books in this series. Linear Programming Robert J. Green Transportation Logistics Harilaos N. Combat Modeling Alan R. Principles of Forecasting J. Public Policy Analysis Wil A.


Dr. John W. Chinneck

Supply Chain Risk George A. Linear and Nonlinear Programming David G. Building Intuition Dilip Chhajed. Back cover copy Constrained optimization models are core tools in business, science, government, and the military jogn applications including airline scheduling, control of petroleum refining operations, investment decisions, and many others.

Constrained optimization models have grown immensely in scale and complexity in recent years as inexpensive computing power has become widely available. Models now frequently have many complicated interacting constraints, giving rise to hcinnek host of issues related to feasibility and infeasibility.

For example, it is sometimes difficult to find any feasible point at all for a large model, or even to accurately determine if vhinnek exists, e.

If the model is feasible, how quickly can a solution be found? If the model is infeasible, how can the cause be isolated and diagnosed? Can a repair to restore feasibility be carried out automatically?

Researchers have developed numerous algorithms and computational methods in recent years to address such issues, with a number of surprising spin-off applications in fields such as artificial intelligence and computational biology. Over the same time period, related approaches and techniques relating to feasibility and infeasibility of constrained problems have arisen in the constraint programming community. Feasibility and Infeasibility in Optimization is a timely expository book that summarizes the state of the art in both classical and recent algorithms related to feasibility and infeasibility in optimization, with a focus on practical methods.

All model forms are covered, including linear, nonlinear, and mixed-integer programs. Connections to related work in constraint programming chinnfk shown. Part I of the book addresses algorithms for seeking feasibility quickly, including new methods for the difficult cases of nonlinear and mixed-integer programs.


Part II provides algorithms for analyzing infeasibility by isolating minimal infeasible or maximum feasible subsets of constraints, or by finding the best repair for the infeasibility. Infeasibility analysis algorithms have arisen primarily over the last two decades, and the book covers these in depth and detail.

Part III describes applications in numerous areas outside of direct infeasibility analysis such as finding decision trees for data classification, analyzing protein folding, radiation treatment planning, automated test assembly, etc.

A main goal of the book is to impart an understanding of the methods so that practitioners can make immediate use of existing algorithms and software, and so that researchers can extend the state of the art and find new applications.

The book is of interest to researchers, students, and practitioners across the applied sciences who are working on optimization problems.

Feasibility and Infeasibility in Optimization: : Algorithms and Computational Methods

Table of contents Seeking Feasibility. Review quote From the reviews: With up to date coverage and very thorough bibliography, it will be of definite interest to researchers working in this area.

The book may also be of interest to those readers who are more interested in modeling and applications but want to learn something about jjohn for analyzing the feasibility of optimization models.